SURFCOM CONTOURECORD Linear DX3/SD3 Series

SURFCOM

CONTIIRECORD

Works for you

We have prepared a lineup that answers to you needs in terms of surface texture and contour measuring instruments
Choose one that best fits to your purpose.

It's a measuring machine that finds out correlation with the material, process, function, and performance as well as optimum management by precisely capturing the minutely changing surface profile (the range between several nanometer and several tenth micrometer) in 2-D and 3-D image data and through quantitative measurement.

New concept software ACCTee

World first

Adopting a linear motor driving unit in the surface roughness measurement machine and the contour profile measurement machine

Hybrid

Equipped with a wide-range roughness contour integrated detector (S2000DX3/SD3)

Eco-product

Adoption of new design for space-saving feature
Highly accurate roughness analysis
The high performance roughness detector provides the maximum 500,000 magnification (S1500DX3/SD3 S1900DX3/SD3 S2000DX3/SD3)

Highly accurate contour analysis
The contour detector (analog) surpasses digital devices in terms of accuracy (C1700DX3/SD3 S1900DX3/SD3)

CONTENTS

\square
Product lineup 4-5
Product feature
(surface roughness and contour profile measurement machine) 6-7
Introduction of measurement machines (DX3/SD3 series) 8-13
Option 14-19
Data process software integrated measurement system - ACCTee 20-21
Description of data analysis/parameter standard 22-27

Product lineup

Surface roughness measurement

The feel of the surface of physical objects is often expressed as "smooth" or "rough" however, there are minute convexes and concaves on the surface. The surface roughness means the parameter expressing the degree of such minute convexes and concaves.

The purpose of the surface roughness measurement is to help the improvement of product quality control and cost management. Following are the typical items that affect the function and performance of machines.

Difference of surface

Example of "smooth" surface
Uninhurs Example of "rough" surface

Contour profile measurement

The contour profile means the profile (sectional contour) traced along the ridge line of the appearance and figure of an entire physical object.

The contour profile measurement machine is used for making a dimension measurement evaluation by tracing a surface (marked by stylus) and enlarging the profile.
The machine is useful for measuring such objects as: the convexes and concaves which are difficult to be measured or inspected by projector; inner profile of a hole; and tiny objects which is difficult to apply a stylus by 3-D coordinate measuring machine.

Basic structure of the contour profile measurement machine

Line up of Surfcom and Contourecord series

Classification	Linear Series Measuring instrument Models	Measuring Function		Sensing Types of Detector				Style		Main Specifications				Export license
		Roughness	Contour	Analog Roughness	Analog Contour	Digital Contour	$\begin{aligned} & \text { Integrated } \\ & \text { Analog } \end{aligned}$	Allin-One	Separate	Detector Stroke (Z)	Indication Accuracy of Contour (Z)	Resolution of Detector (Z)	Tracing driver (X)	
Roughness		O		-				-		$1000 \mu \mathrm{~m}$	-	$0.1 \sim 10 \mathrm{~nm}$	$0.05+1 \mathrm{~L} / 1000 \mu \mathrm{~m}$	Not reqiured
				0					0					Not reqiured
Contour			0		O			O		50 mm	$\pm(1.8+\mid 2 \mathrm{HI} / 100) \mu \mathrm{m}$	$0.1 \sim 1 \mu \mathrm{~m}$	$1 \mu \mathrm{~m} / 100 \mathrm{~mm}$ ($2 \mu \mathrm{~m} / 200 \mathrm{~mm}$)	Required
			O		O				0					Required
						O		O			$\pm(0.8+12 \mathrm{HI} / 100) \mu \mathrm{m}$	$0.025 \mu \mathrm{~m}$		Not reqiured
			O			0			O					Not reqiured
Roughness/ Contour (Hybrid Detector)		O	0	O				O		Roughness: $1000 \mu \mathrm{~m}$ Contour : 50 mm	$\pm(1.8+12 \mathrm{HI} / 100) \mu \mathrm{m}$	Roughness: $0.1 \sim 10 \mathrm{~nm}$ Contour: $0.1 \sim 1 \mu \mathrm{~m}$	Roughness: $0.05+1 \mathrm{~L} / 1000 \mu \mathrm{~m}$ Contour: $1 \mu \mathrm{~m} / 100 \mathrm{~mm}$ $(2 \mu \mathrm{~m} / 200 \mathrm{~mm})$	Required
			0	0					-					Required
			O	O							$\pm(0.8+12 \mathrm{HI} / 100) \mu \mathrm{m}$	Roughness: $0.1 \sim 10 \mathrm{~nm}$ Contour: $0.025 \mu \mathrm{~m}$		Not reqiured
		O		0										Not reqiured
Roughness/ Contour (Integrated Detector)			O				O			5 mm	$\pm(2.5+12 \mathrm{HI} / 100) \mu \mathrm{m}$	0.8~80nm	$0.05+1 \mathrm{~L} / 1000 \mu \mathrm{~m}$	Required
		O							-					Required

\star In case of export, please contact us.

Structure

The simple structure of the linear motor unit with a noncontact driving unit and without feed screws or gearboxes, the linear motor ensures a long-term stable operation with less vibration.
Due to the adoption of the linear motor, the vibration is reduced to less than one-fifth ($\mathrm{Ra}=1 \mathrm{~nm}$) of the conventional machines and it is understood that the vibration is relatively small even changing the speed.
Because of the structure of the machine, the factor for backlash is also reduced which improved the response.

Low vibration and high accuracy

First-ever of the world, Tokyo Seimitsu has introduced a high accurate linear motor in the driving unit (patent applied for). We have cleared the "limit of high accuracy" of the fundamental structure.
The linear motor is also suitable for reciprocation movement and provides accurate locating and high-speed measurement. Because of the simple structure of the linear driving unit composing only the linear motor and the scale, the machine provides high response and high accurate locating operation.

The detector lineup for high accurate measurement

- Surfcom 2000 series

Wide-range pickup (hybrid detector)

The high-range detector performs evaluation, analysis, and printing automatically by once measuring the surface roughness or contour profile.
Since the another detector can be added, the measurement range of one measurement machine can be expanded.
Example 1: S1900 + Hybrid
Example 2: S2000 + roughness + contour
Measuring force $: 0.75 \mathrm{mN}$
Measurement range $: 5 \mathrm{~mm}$
Instruction accuracy $: \pm(2.5+\mid 2 \mathrm{H} / 100) \mu \mathrm{m}$
Minimum resolution $: 0.0008 \mu \mathrm{~m}$

Surfcom 1500 series
Roughness pickup for large magnification

Achieving the measurement range of $1000 \mu \mathrm{~m}$ for roughness measurement, minute contour and rough alignment measurement can be provided.
In order to support large magnification measurement for high precision processed part, the machine provides maximum 500,000 magnification.

Measuring force	$: 0.75 \mathrm{mN}$
Measurement range	$: 1000 \mu \mathrm{~m}$
Measurement magnification	$: 0.0001 \mu \mathrm{~m}$
Measurement magnification	$: \times 500,000$
Outer diameter	$: \phi 14 \mathrm{~mm}$

Eco-product

For making products, we have to think about various impacts on the environment. Tokyo Seimitsu group place an obligation for environmental compliance of a certain degree or more on our newly developed products, and set a goal of producing environmental-friendly products including semi-conductors, measurement devices, parts, and other elements.
The CO2 exhaust is calculated for each product, trying to abate the environmental burden ranging from the material procurement to the abandonment.

Space-saving DX design

- Space-saving feature for linear DX design
- For the space-saving feature, the installation site can be utilized effectively.
The installation size for linear DX design: $910 \times 550=0.5 \mathrm{~m}^{2}$

Maintenance-free

The slide between the core and shaft is a no contact drive type, as the linear motor is not attached with ball screws and gear boxes. The maintenance-free feature is provided by means of no wear-out and no vibration (sound) mechanism
The user's maintenance free is also achieved by improving the material and working accuracy of the sliding surfaces, low friction property, and wear and abrasion resistance.
The minute surfacing objects generated by oil slick can be eliminated for avoiding the impact on the straightness measurement and evaluation.

Operation

Improved operability with multi operation
The joystick lever and the JOG dial of the operation panel, and the manual feed switch at the driving unit side can be concurrently used. These three modes can be switched freely depending on the profile to be measured and for the relocation to the measurement position.

Contourecord 2700 series
High accuracy contour detector (digital)

High accuracy
The contour detector, Contourecord 2700, is a detector of high accuracy equipped with a laser beam analysis scale.
Achieving $0.025 \mu \mathrm{~m}$ for minimum resolution, the machine provides the high accuracy measurement covering the entire detection range of 50 mm in the Z direction.

Measuring force adjustable range	$: 10 \sim 30 \mathrm{mN}$
Measurement range	$: 50 \mathrm{~mm}$
Instruction accuracy	$: \pm(0.8+\|2 \mathrm{H}\| / 100) \mu \mathrm{m}$
Minimum resolution	$: 0.025 \mu \mathrm{~m}$

Compound machine

Space-saving feature for compound and integrated machine
 (S1500DX3)

A compound machine or an integrated machine can provide the features of two machines with less installation space and with less cost.

Linear fast relocation

High speed measurement for the significant improvement of productivity.

- Achieving incomparable high speed (roughness measurement: max. $3 \mathrm{~mm} / \mathrm{s}$, waviness profile curve measurement: max. $20 \mathrm{~mm} / \mathrm{s}$, and wave speed measurement: $60 \mathrm{~mm} / \mathrm{s}$), the machine provides automatic operation including the measurement, analysis, and result print, which may improve the efficiency of the measurement 5 to 10 times. (compared with another product of ours)

The 3-D roughness measurement can make an evaluation based on the surface by repeating the scanning motion of the detector. For the measurement of maximum 2000 lines, the measurement time can be reduced up to 30 to 50 percent comparing with the conventional method. High speed measurement for the significant improvement of productivity.

Glass Flatness Measurement

Measuring Range	$20 \mathrm{~mm} \times 20 \mathrm{~mm}$
	1000 Lines (Y-direction)
Conventional Instrument	165 minutes
S1500DX-3DF	22 minutes

$\square=$

 SURFCOM 2OOODXヨ/SDヨ

SURFCOM 2000DX3

As the standard equipment, the machine is equipped with the detectors for measuring the surface roughness and contour profile, which enables the evaluation, analysis, and printing for the roughness measurement and contour profile measurement with one unit, leading to the improvement of the workability.
For the space-saving design of the DX3 model, the measurement room can be utilized efficiently.

SURFCOM 2000SD3
*Printer is optional.

Digh-accuracy, Wide-range Detector Built-in

Measuring range $\quad Z$-axis direction: 5 mm range (Resolution: 80 nm) to 0.05 mm range (Resolution: 0.8 nm)
Indication Accuracy \quad Z-axis direction: $\pm 2.5+2|\mathrm{H}| / 100 \mu \mathrm{~m} \quad \mathrm{H}=$ detector measuring range: $\pm 2.5 \mathrm{~mm}$

■New Linear Motor Drive (Patent pending)

The new linear motor enables the fastest measurement speeds in the world and low vibration for stable, high-magnification measurement. A simple configuration and non-contact driver also maintains stability over long term operation.

■High-speed measurement for Dramatically Improved Productivity
Roughness Measurement: $3 \mathrm{~mm} / \mathrm{s}$ max.; Contour Measurement: $20 \mathrm{~mm} / \mathrm{s}$ max.; Moving Speed: $60 \mathrm{~mm} / \mathrm{s}$ max. Measurement Efficiency: 10 times better (compared with previous models)

Specifications											
Model				SURFCOM 2000DX3/SD3							
				-12	-13	-14	-15	-22	-23	-24	-25
Measuring Range	Z-axis (vertical)			$5 \mathrm{~mm} /$ Standard arm; $10 \mathrm{~mm} / 2 \times$ arm							
	X-axis (horizontal)			100mm				200mm			
Accuracy	Detectors	Z-axis indication accuracy (vertical)		$\pm(2.5+\|2 \mathrm{H}\| / 100) \mu \mathrm{m} \quad$ ($\mathrm{H}:$ Measuring Height mm)							
		Resolution		$0.8 \mathrm{~nm} / 0.05 \mathrm{~mm}$ range, $3.2 \mathrm{~nm} / 0.2 \mathrm{~mm}$ range, $8 \mathrm{~nm} / 0.5 \mathrm{~mm}$ range, $16 \mathrm{~nm} / 1 \mathrm{~mm}$ range, $32 \mathrm{~nm} / 2 \mathrm{~mm}$ range, $80 \mathrm{~nm} / 5 \mathrm{~mm}$ range							
	X-axis	Indication accuracy (horizonta) / Min Pitch		$\pm(1.0+1 \mathrm{~L} / 100) \mu \mathrm{m} \quad$ (L: Measuring length mm) / Min $0.1 \mu \mathrm{~m}$							
	Tracing driver	Scale Resolution		$0.016 \mu \mathrm{~m}$							
Straightness accuracy				(0.05+1.0L/1000) $\mu \mathrm{m}$ (L: Measuring length mm)							
Sensing method				Z-axis (vertical direction): differential transducer; X-axis (horizontal direction): linear scale							
Speed	Column up/down speed (Z-axis)			$3 \sim 10 \mathrm{~mm} / \mathrm{s}$							
	Speed (X-axis)			Measuring: $0.03 \sim 20 \mathrm{~mm} / \mathrm{s}$, Movement: $60 \mathrm{~mm} / \mathrm{s}$ max.							
Detectors	Stylus, Measuring Force			Changeable, Retract function							
	Stylus radius (Stylus material)			$2 \mu \mathrm{mR}\left(60^{\circ}\right.$ conical diamond) $0.75 \mathrm{mN}, 25 \mu \mathrm{~m}\left(24^{\circ}\right.$ conical super-solder) 5 mN , one equipped as standard for each							
Moving range	Pickup movement drive distance			100 mm				200 mm			
	Column up/down stroke			250mm	450 mm		650mm	250mm	450mm		650mm
Stone table dimensions and weight	Dimensions			600x320mm		$1000 \times 450 \mathrm{~mm}$		$600 \times 320 \mathrm{~mm}$		1000x450mm	
	Max. load \star			37kg	28kg	93kg	84kg	31 kg	22kg	87kg	78 kg
Dimensions and weight $\%$	Installation dimensions		Width	1250 mm		1650 mm		1250 mm		1650 mm	
			Depth	800mm		900mm		800mm		900mm	
			Height	1480 mm	1680 mm		1880 mm	1480 mm	1680 mm		1880 mm
	Weight			225kg	235kg ${ }^{\text {a }}$ 420kg		430kg	230kg	240kg	425kg	435kg
	Power source/power consumption			Single phase AC100~240V $\pm 10 \%$ grounding required., $50 / 60 \mathrm{~Hz} / 670 \mathrm{VA}$							

SURFCOM 1500DX3/SD3

SURFCOM 1500DX3

Introducing the high accuracy linear motor for the surface roughness measurement machine first-ever of the world.
Achieving the world class low vibration, which allows high accuracy and large magnification measurement.
For the space-saving design of the DX3 model, the measurement room can be utilized efficiently.

SURFCOM 1500SD3
*Printer is optional.

■High-Performance Compact Pickup

A new compact built-in pickup allows high-magnification, wide area measuring.
The measuring range is $1000 \mu \mathrm{~m}$ with an outside diameter of 14 mm , and a measuring magnification of 500,000 times.

■New Linear Motor Drive (Patent Pending)

The new linear motor enables the fastest measurement speeds in the world and low vibration for stable, high-magnification measurement.
A simple configuration (no feed screw or gear box) and non-contact driver also maintains stability over long term operation.

■High-speed Measurement for Dramatically Improved Productivity

Roughness Measurement: $3 \mathrm{~mm} / \mathrm{s}$ max.; Waviness Measurement: $20 \mathrm{~mm} / \mathrm{s}$ max.; Moving Speed: $60 \mathrm{~mm} / \mathrm{s}$ max. Measurement Efficiency: 10 times better (compared with previous models)

Specifications

Model			SURFCOM 1500DX3/SD3							
			-12	-13	-14	-15	-22	-23	-24	-25
Measuring Range	Z-axis (vertical)		$1000 \mu \mathrm{~m}$							
	X-axis (horizontal)		100mm				200mm			
Accuracy	Detectors Me	Measuring Resolution	$0.01 \mu \mathrm{~m} / 1000 \mu \mathrm{~m}$ range $\sim 0.0001 \mu \mathrm{~m} / 6.4 \mu \mathrm{~m}$ range							
	X-axis \quad Re	Resolution	$0.04 \mu \mathrm{~m}$ or 32,000 points (300,000 data uptake points)							
	Tracing driver	Scale Resolution	$0.016 \mu \mathrm{~m}$							
Straightness accuracy			(0.05+1.0L/1000) $\mu \mathrm{m}$ (L: Measuring length mm)							
Sensing method			Z-axis (vertical direction): differential transducer; X-axis (horizontal direction): linear scale							
Speed	Column up/down speed (Z-axis)		$3 \sim 10 \mathrm{~mm} / \mathrm{s}$							
	Speed (X-axis)		Measuring: $0.03 \sim 20 \mathrm{~mm} / \mathrm{s}$, Movement: $60 \mathrm{~mm} / \mathrm{s}$ max.							
Detectors	Stylus, Measuring Force		Changeable, 0.75 mN							
	Stylus radius (Stylus material)		$2 \mu \mathrm{mR}\left(60^{\circ}\right.$ conical diamond), one equipped as standard							
Moving range	Pickup movement drive distance		100 mm				200mm			
	Column up/down stroke		250mm	450mm		650mm	250mm	450 mm		650mm
Stone table dimensions and weight	Dimensions		$600 \times 320 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$		$600 \times 320 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$	
	Max. load \star		38 kg	29 kg	94kg	85kg	32 kg	23 kg	88kg	79 kg
Dimensions and weight \ldots	Installation dimensions	Width	1250 mm		1650 mm		1250 mm		1650 mm	
		Depth	800mm		900mm		800mm		900mm	
		Height	1480 mm	1680mm		1880 mm	1480 mm	1680mm		1880 mm
	Weight		225 kg	235 kg	420kg	430kg	230kg	240kg	425kg	435kg
	Power source/power consumption		Single phase AC100 $\sim 240 \mathrm{~V} \pm 10 \%$ grounding required., $50 / 60 \mathrm{~Hz} / 670 \mathrm{VA}$							

\star Dimensions and weight are for the DX type.

\square
 CONTOURECORD 17OODXヨ/SDコ

CONTOURECORD 17OODX3

Achieving the high accuracy contour detector. Surpassing the digital counterpart, the analog detector achieves the accuracy of higher level. For the space-saving design of the DX3 model, the measurement room can be utilized efficiently.

■Easy Evaluation of General-Purpose Part Contours

Contours of parts that normally have been evaluated on a projector of tool microscope now can be obtained quickly and easily. Measured results can be incorporated into inspection reports.

-New Linear Motor Drive (Patent Pending)

The new linear motor enables the fastest measurement speeds in the world and low vibration for stable, high-magnification measurement. A simple configuration (no feed screw or gear box) and non-contact driver also maintains stability over long term operation.

\square High-speed Measurement for Dramatically Improved Productivity

Contour Measurement: $20 \mathrm{~mm} / \mathrm{s}$ max.; Moving Speed: $60 \mathrm{~mm} / \mathrm{s}$ max.
Measurement Efficiency: 10 times better (compared with previous models)

Specifications

Model				CONTOURECORD 1700DX3/SD3									
				-12	-13	-14	-15	-22	-23	-24	-25		
Measuring Range		Z-axis (vertical) X-axis (horizontal)		50 mm									
		100 mm	200mm										
Accuracy	Detectors			Z-axis indication accuracy (vertical)		$\pm(1.8+\|2 \mathrm{H}\| / 100) \mu \mathrm{m} \quad(\mathrm{H}:$ Measuring Height mm)							
		Resolution		$0.1 \mu \mathrm{~m} / 5 \mathrm{~mm}$ range, $0.4 \mu \mathrm{~m} / 20 \mathrm{~mm}$ range, $1 \mu \mathrm{~m} / 50 \mathrm{~mm}$ range									
	X-axis	Indication accuracy (horizontal) / Min Pitch		$\pm(1.0+1 \mathrm{~L} / 100) \mu \mathrm{m} \quad(\mathrm{L}$: Measuring length mm) / Min $0.1 \mu \mathrm{~m}$									
	Tracing driver	Scale Resolution		$0.016 \mu \mathrm{~m}$									
Straightness accuracy				$1 \mu \mathrm{~m} / 100 \mathrm{~mm}$				$2 \mu \mathrm{~m} / 200 \mathrm{~mm}$					
Sensing method		X-axis (horizontal)		Linear scale									
		Z-axis (vertical)		Differential transducer (trans)									
Speed		Column up/down speed (Z-axis)		$3 \sim 10 \mathrm{~mm} / \mathrm{s}$									
		Speed (X-axis)		Measuring: $0.03 \sim 20 \mathrm{~mm} / \mathrm{s}$, Movement: $60 \mathrm{~mm} / \mathrm{s}$ max.									
Detectors		Stylus, Measuring Force		Changeable, 30mN, Retract function									
		Stylus radius (Stylus material)		$25 \mu \mathrm{~m}\left(24^{\circ}\right.$ conical super-solder), two equipped as standard									
		Measuring Direction, Orientation		Pull/push and Up/down directions, Maximum following angle: 77°									
Moving range		Pickup movement drive distance		100 mm				200 mm					
		Column up/down stroke		244 mm	444 mm		644mm	244 mm	444 mm		644 mm		
Stone table dimensions and weight		Dimensions		$600 \times 320 \mathrm{~mm}$		1000x450mm		$600 \times 320 \mathrm{~mm}$		1000x450mm			
		Max. load \star		37 kg	28kg	93kg	84kg	31 kg	22kg	87 kg	78 kg		
Dimensions and weight $\%$		Installation dimensions	Width	1250 mm		1650 mm		1250 mm		1650 mm			
		Depth	800 mm		900mm		800mm		900mm				
		Height	1480 mm	1680 mm		1880 mm	1480 mm	1680 mm		1880mm			
		Weight	225 kg	235kg	420kg	430kg	230kg	240kg	425kg	435 kg			
		Power source/power consumption	Single phase AC100~240V $\pm 10 \%$ grounding required., $50 / 60 \mathrm{~Hz} / 670 \mathrm{VA}$										

\star Dimensions and weight are for the DX type.

FSurfcom 19000x3/SD3

As the standard equipment, the machine is equipped with the detectors for measuring the surface roughness and contour profile, which enables the evaluation, analysis, and printing for the roughness measurement and contour profile measurement with one unit, leading to the improvement of the workability. For the space-saving design of the DX3 model, the measurement room can be utilized efficiently.

SURFCOM 1900SD3
*Printer is optional.

\square Higher Precision ... Allows measuring of workpiece contours that are impossible for other instruments

Measuring accuracy of $1.8 \mu \mathrm{~m}$ provides plenty of accuracy for molds and other precision components. A level of measuring accuracy that is normally associated with high-end machines greatly broadens the range of possible appplications.

\square New Linear Motor Drive (Patent Pending)

The new linear motor enables the fastest measurement speeds in the world and low vibration for stable, high-magnification measurement.
A simple configuration (no feed screw or gear box) and non-contact driver also maintains stability over long term operation.

■High-speed Measurement for Dramatically Improved Productivity

Roughness Measurement: $3 \mathrm{~mm} / \mathrm{s}$ max.; Contour Measurement: $20 \mathrm{~mm} / \mathrm{s}$ max.; Moving Speed: $60 \mathrm{~mm} / \mathrm{s}$ max. Measurement Efficiency: 10 times better (compared with previous models)

Specifications

Model				SURFCOM 1900DX3/SD3								
				-12	-13	-14	-15	-22	-23	-24	-25	
Measuring Range		Z-axis (vertical)		50 mm								
		X-axis (horizontal)		100mm				200mm				
Accuracy	Roughness	Detectors ${ }^{\text {Mea }}$	Measuring Resolution	$0.01 \mu \mathrm{~m} / 1000 \mu \mathrm{~m}$ range $\sim 0.0001 \mu \mathrm{~m} / 6.4 \mu \mathrm{~m}$ range								
		Tracing diver X -ax	Resolution	$0.04 \mu \mathrm{~m}$ or 32,000 points (300,000 data uptake points)								
	Contour		Z-axis indication accuracy (vertical)	$\pm(1.8+\|2 \mathrm{H}\| / 100) \mu \mathrm{m} \quad(\mathrm{H}:$ Measuring Height mm)								
			Resolution	$0.1 \mu \mathrm{~m} / 5 \mathrm{~mm}$ range, $0.4 \mu \mathrm{~m} / 20 \mathrm{~mm}$ range, $1 \mu \mathrm{~m} / 50 \mathrm{~mm}$ range								
		X-axis lndicat	Indication accuracy (hotizonta)/ Min Pitch	$\pm(1.0+1 \mathrm{~L} / 100) \mu \mathrm{m} \quad(\mathrm{L}:$ Measuring length mm) / Min $0.1 \mu \mathrm{~m}$								
	Tracing driver \quad Scale Resolution			$0.016 \mu \mathrm{~m}$								
Straightness accuracy				Roughness System: (0.05+1.0L/1000) $\mu \mathrm{m}$ (L: Measuring length mm), Contour System: $1 \mu \mathrm{~m} / 100 \mathrm{~mm}$, $2 \mu \mathrm{~m} / 200 \mathrm{~mm}$								
Sensing method		X-axis (horizontal)		Linear scale								
		Z-axis (vertical)	Roughness Detector	Differential transducer (trans)								
		Contour Detector	Differential transducer (trans)									
Speed			Column up/down speed (Z-axis)		$3 \sim 10 \mathrm{~mm} / \mathrm{s}$							
		Speed (X-axis)		Measuring: $0.03 \sim 20 \mathrm{~mm} / \mathrm{s}$, Movement: $60 \mathrm{~mm} / \mathrm{s}$ max.								
Detectors	Roughness	Stylus, Measuring Force		Changeable, 0.75 mN								
		Stylus radius (Stylus material)		$2 \mu \mathrm{mR}\left(60^{\circ}\right.$ conical diamond), one equipped as standard								
	Contour	Stylus, Measuring Force		Changeable, 30mN, Retract function								
		Stylus radius (Stylus material)		$25 \mu \mathrm{~m}\left(24^{\circ}\right.$ conical super-solder), two equipped as standard								
		Measuring Direction, Orientation		Pull/push and Up/down directions, Maximum following angle :77 ${ }^{\circ}$								
Moving range		Pickup movement drive distance		100 mm				200mm				
		Column up/down stroke		244mm			644mm	244mm			644 mm	
Stone table dimensions and weight		Dimensions		600x320mm $1000 \times 450 \mathrm{~mm}$				600x320mm		$1000 \times 450 \mathrm{~mm}$		
		Max. load ${ }_{\text {* }}$		37 kg	28kg	93kg	84kg	31 kg	22kg	87kg	78 kg	
Dimensions and weight $\%$		Installation dimensions	Width	1250 mm		1650 mm		1250 mm		1650 mm		
		Depth	800mm		900 mm		800mm		900 mm			
		Height	1480 mm	1680mm		1880kg	1480 mm	1680mm		1880kg		
		Weight	225 kg	235kg	420kg	430kg	230kg	240kg	425kg	435kg		
		Power source/power consumption	Single phase AC100~240V $\pm 10 \%$ grounding required., $50 / 60 \mathrm{~Hz} / 670 \mathrm{VA}$									

Dimensions and weight are for the DX type.

$\bar{\square}$ CONTOURECORD 2TOODXB/SDヨ

CONTOURECORD 2フOODX3

Equipped with high accuracy contour detector. Introducing the laser beam diffraction scale that achieves the resolution of $0.025 \mu \mathrm{~m}$.
For the space-saving design of the DX3 model, the measurement room can be utilized efficiently.

High-accuracy Contour Detector Using Laser Optical Diffraction Scale

Indication accuracy of detectors : $\pm(0.8+|2 \mathrm{H}| / 100) \mu \mathrm{m}$, Resolution : $0.025 \mu \mathrm{~m}$ (the entire range). The system can measured and evaluated the contour of a precision manufacturing component at high accuracy.

\square New Linear Motor Drive (Patent Pending)

The new linear motor enables the fastest measurement speeds in the world and low vibration for stable, high-magnification measurement.
A simple configuration (no feed screw or gear box) and non-contact driver also maintains stability over long term operation.

■High-speed Measurement for Dramatically Improved Productivity

Contour Measurement: 20mm/s max.; Moving Speed: 60mm/s max.
Measurement Efficiency: 10 times better (compared with previous models)

Specifications

Model				CONTOURECORD 2700DX3/SD3									
				-12	-13	-14	-15	-22	-23	-24	-25		
Measuring Range		Z-axis (vertical) X-axis (horizontal)		50 mm									
		100 mm	200mm										
Accuracy	Detectors			Z-axis indication accuracy (vertical)		$\pm(0.8+\|2 \mathrm{H}\| / 100) \mu \mathrm{m}$ (H: Measuring Height mm)							
		Resolution		$0.025 \mu \mathrm{~m} /$ Full range									
	X-axis	Indication accuracy (horizontal) / Min Pitch		$\pm(1.0+1 \mathrm{~L} / 100) \mu \mathrm{m}$ (L: Measuring length mm) / Min $0.1 \mu \mathrm{~m}$									
	Tracing driver	Scale Resolution		$0.016 \mu \mathrm{~m}$									
Straightness accuracy				$1 \mu \mathrm{~m} / 100 \mathrm{~mm}$				2 $2 \mu \mathrm{~m} / 200 \mathrm{~mm}$					
Sensing method		X-axis (horizontal)		Linear scale									
		Z-axis (vertical)		Laser optical diffraction scale									
Speed		Column up/down speed (Z-axis)		$3 \sim 10 \mathrm{~mm} / \mathrm{s}$									
		Speed (X-axis)		Measuring: $0.03 \sim 20 \mathrm{~mm} / \mathrm{s}$, Movement: $60 \mathrm{~mm} / \mathrm{s}$ max.									
Detectors		Stylus, Measuring Force		Changeable, 30 mN , Retract function									
		Stylus radius (Stylus material)		$25 \mu \mathrm{~m}\left(24^{\circ} \mathrm{conical}\right.$ super-solder), two equipped as standard									
		Measuring Direction, Orientation		Pull/push and Up/down directions, Maximum following angle : 77°									
Moving range		Pickup movement drive distance		100 mm				200mm					
		Column up/down stroke		226mm	426 mm		626 mm	226 mm	426 mm		626mm		
Stone table dimensions and weight		Dimensions		$600 \times 320 \mathrm{~mm}$		1000x450mm		$600 \times 320 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$			
		Max. load \star		37 kg	28kg	93kg	84kg	31kg	22kg	87kg	78 kg		
Dimensions and weight $\%$		Installation dimensions	Width	1250 mm		1650 mm		1250 mm		1650 mm			
		Depth	800 mm		900mm		800mm		900mm				
		Height	1480 mm	1680 mm		1880 mm	1480 mm	1680mm		1880 mm			
		Weight	225 kg	235kg	420kg	430kg	230kg	240kg	425kg	435kg			
		Power source/power consumption	Single phase AC100~240V $\pm 10 \%$ grounding required., $50 / 60 \mathrm{Hz/670VA}$										

\star Dimensions and weight are for the DX type.

SURFCOM 2900DX3

The detector is equipped with the device for measuring the surface roughness and high accuracy contour profile.
Two tasks including the measurement of surface roughness and contour profile is achieved in one unit that provides high efficiency and high accurate evaluation.
For the space-saving design of the DX3 model, the measurement room can be utilized efficiently.

SURFCOM 2900SD3
*Printer is optional.

2-in-1 High-accuracy Measuring Instrument

Indication accuracy of contour detectors : $\pm(0.8+\mid 2 \mathrm{H} / / 100) \mu \mathrm{m}$, Resolution : $0.025 \mu \mathrm{~m}$ (the entire range). Measuring magnification of roughness pickup : 50,000 times Max. The system can measured and evaluated the roughness and contour of a precision manufacturing component at high accuracy.

\square New Linear Motor Drive (Patent Pending)

The new linear motor enables the fastest measurement speeds in the world and low vibration for stable, high-magnification measurement.
A simple configuration (no feed screw or gear box) and non-contact driver also maintains stability over long term operation.
—High-speed Measurement for Dramatically Improved Productivity
Roughness Measurement: $3 \mathrm{~mm} / \mathrm{s}$ max.; Contour Measurement: $20 \mathrm{~mm} / \mathrm{s}$ max.; Moving Speed: $60 \mathrm{~mm} / \mathrm{s}$ max. Measurement Efficiency: 10 times better (compared with previous models)

Specifications

Model				SURFCOM 2900DX3/SD3									
				-12	-13	-14	-15	-22	-23	-24	-25		
Measuring Range		Z-axis (vertical)		50 mm									
		X-axis (horizontal)		100 mm				200 mm					
Accuracy	Roughness	Detectors ${ }^{\text {a }}$ Measuring Resolution		$0.01 \mu \mathrm{~m} / 1000 \mu \mathrm{~m}$ range $\sim 0.0001 \mu \mathrm{~m} / 6.4 \mu \mathrm{~m}$ range									
		Tracing diviver X -	X-axis Resolution	$0.04 \mu \mathrm{~m}$ or 32,000 points (300,000 data uptake points)									
	Contour			$\pm(0.8+\|2 \mathrm{H}\| / 100) \mu \mathrm{m}$ (H: Measuring Height mm)									
			Resolution	$0.025 \mu \mathrm{~m} /$ Full range									
		X-axis Inic		$\pm(1.0+1 \mathrm{~L} / 100) \mu \mathrm{m}$ (L: Measuring length mm) / Min $0.1 \mu \mathrm{~m}$									
	Tracing driver ${ }^{\text {a }}$ Scale Resolution			$0.016 \mu \mathrm{~m}$									
Straightness accuracy				Roughness System: (0.05+1.0L/1000) mm (L: Measuring length mm), Contour System: $1 \mu \mathrm{~m} / 100 \mathrm{~mm}, 2 \mu \mathrm{~m} / 200 \mathrm{~mm}$									
Sensing method		X-axis (horizontal)		Linear scale									
		Z-axis (vertical)	$\begin{array}{\|l\|l\|} \hline \text { Roughness Detector } \\ \hline \text { Contour Detector } \\ \hline \end{array}$	Differential transducer (trans)									
		Laser optical diffraction scale											
Speed			Column up/down speed (Z-axis) Speed (X-axis)		3 $3 \sim 10 \mathrm{~mm} / \mathrm{s}$								
		Measuring: $0.03 \sim 20 \mathrm{~mm} / \mathrm{s}$, Movement: $60 \mathrm{~mm} / \mathrm{s}$ max.											
Detectors	Roughness	Stylus, Measuring Force		Changeable, 0.75 mN									
						$2 \mu \mathrm{mR}\left(60^{\circ}\right.$ conical diamond), one equipped as standard							
	Contour	Stylus, Measuring Force		Changeable, 30 mN , Retract function									
		Stylus radius (Stylus material)		$25 \mu \mathrm{~m}\left(24^{\circ}\right.$ conical super-solder), two equipped as standard									
		Measuring Direction, Orientation		Pull/push and Up/down directions, Maximum following angle : 77°									
Moving range		Pickup movement drive distance Column up/down stroke		100 mm				200mm					
		226 mm			626 mm	226 mm			626 mm				
Stone table dimensions and weight				Dimensions		$600 \times 320 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$		$600 \times 320 \mathrm{~mm}$		$1000 \times 450 \mathrm{~mm}$	
		Max. load \star		37 kg	28kg	93kg	84 kg	31 kg	22 kg	87kg	78kg		
Dimensions and weight\%		Installation dimensions	n Width	1250 mm		1650 mm		1250 mm		1650 mm			
		s Depth	800 mm		900 mm		800mm		900 mm				
		Height	1480 mm	1680 mm		1880 mm	1480 mm	1680 mm		1880 mm			
		Weight	225 kg	235 kg	420kg	430kg	230 kg	240 kg	425kg	435 kg			
		Power source/power consumption	Single phase AC100~240V $\pm 10 \%$ grounding required., $50 / 60 \mathrm{~Hz} / 670 \mathrm{VA}$										

Option

System Configuration

Drive unit
 SURFCOMOOOO $\triangle \triangle-\square \square^{\text {Measuring stand }}$
 Type(DX3/SD3)

S1500, C1700, C2700, S1900, S2900, S2000 Series

Drive	Measurement stand			
Pickup movement -1 E-RM-S177 \square Max. movement Distance 100 mm E-RM-S183D \square Max. movement Distance 200 mm		$-\square 3$ Motorized $600 \times 320 \mathrm{~mm}$ 450 mm 30 kg		

Allowable load change depends on the max. load of the anti vibration table in case of combination with it.

\square External View

Replaceable Stylus for S2000DX/SD

Measuring Application	Model	Outer Appearance	Specifications	Remarks
General Purpose	DM47501		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	Standard accessory • Stroke : 5mm - For roughness and contour measurement
	DM47508		$5 \mu \mathrm{mR}, 30^{\circ}$ conical diamond, 0.75 mN	Stroke : $5 \mathrm{~mm} \cdot$ Stylus height: 13 mm - For roughness and contour measurement
	DM47548		$5 \mu \mathrm{mR}, 40^{\circ}$ conical diamond, 4 mN	- Stroke : 5 mm - For roughness and contour measurement
Contour stylus 2X arm	DM47513		$25 \mu \mathrm{mR}, 24^{\circ}$ conical diamond, 5 mN	Standard accessory Stroke : 10 mm For contour only
Right angle stylus	DM47504		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	-Stroke : 5 mm - Offset: 13.5 mm - Stylus height:13mm - For roughness and contour measurement
Fine hole stylus	DM47505		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	Stroke : 5 mm Stylus height:2mm For roughness only
Extra fine hole stylus	DM47506		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	Stroke : 5mm Stylus height: 1 mm For roughness only
Deep hole stylus	DM47507		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	-Stroke : 5mm - Stylus height:25mm -For roughness and contour measurement
	DM47549		$5 \mu \mathrm{mR}, 90^{\circ}$ conical diamond, 4 mN	-Stroke : 5 mm - Stylus height: 25 mm - For roughness and contour measurement
General Purpose stylus 2x arm	DM47547		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 4 mN	-Stroke : 10 mm - Stylus height:10mm - For roughness and contour measurement
Corner/tooth surface stylus	DM47523		$2 \mu \mathrm{mR}, 55^{\circ}$ conical diamond, 0.75 mN $\mathrm{LH}=65, \mathrm{LV}=-12.525$	Stroke : 5mm Stylus height:8.3mm For roughness only

Peripherals for S2000DX/SD

Measuring Application	Model	Outer Appearance	Specifications	Remarks
Wide-range hybrid detector holder	E-DH-S182A			
Small hole stylus Master ball calibration unit	E-MC-S59A			

[^0]
Option

S1500DX/SD Stylus for Roughness measurement

Measuring Application	Model	Outer Appearance	Specifications	Remarks
General purpose	DM43801		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	- Standard accessory - All orientations - Horizontal tracing possible
Fine wires, knife edges	DM43802		$2 \mu \mathrm{mR}, 60^{\circ} \mathrm{ax}$-shaped diamond, 0.75 mN	- Downward measurements
Medium fine holes	DM43809		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	- All orientations - Horizontal tracing possible
Extra fine holes, gear flank	DM43811		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	- All orientations - Horizontal tracing possible
Fine holes /thin grooves	DM43812		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	- All orientations - Horizontal tracing possible
Corners /tooth surfaces	DM43814		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.75 mN	- All orientations - Horizontal tracing possible
Deep holes, round grooves	DM43815		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 0.8 mN	- Downward measurements
Fine long holes	DM43821		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 3 mN	Downward measurements Sensitivity: 1/2 Max. - Magnification: x10,000
Low magnification, long holes	DM43822 (1)		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 3 mN	- Downward measurements - Sensitivity: 1/2 Max. Magnification: x20,000
Deep grove corners	DM43827		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 4 mN	- Downward measurements - Sensitivity: 1/2 Max. - Magnification: x10,000
Extra deep grooves	DM43826		$2 \mu \mathrm{mR}, 60^{\circ}$ conical diamond, 4 mN	- Downward measurements - Sensitivity: 1/2 Max. - Magnification: x10,000 - Large waveform distortion

S1500DX/SD Stylus for waviness measurement

Measuring Application	Model	Outer Appearance	Specifications	Remarks
Steps	0102504		$250 \mu \mathrm{mR}, 60^{\circ}$ conical sapphire	- All orientations
Waviness	0102505		$800 \mu \mathrm{mR}$, ruby	- All orientations
Fine long hole waviness	0102520 (1)		$800 \mu \mathrm{mR}$,ruby	Downward measurements - Sensitivity: 1/2 Max. - Magnification: x10,000
Large steps	0102523		$250 \mu \mathrm{mR}$, sapphire	Downward measurements Sensitivity: 1/2 Max. - Magnification: x25,000

Peripherals

Measuring Application	Model	Outer Appearance	Specifications	Remarks
Standard piece	E-MC-S24B (1)		Calibration surface: About $3.1 \mu \mathrm{mRa}$ - Checking surface of stylus pointing: About $0.4 \mu \mathrm{mRa}$ Actual measured value denoted.	For magnification calibration and for checking stylus
Magnification calibrator	E-MC-50B		- Narrow range accuracy: $0 \sim 10 \mu \mathrm{~m} \pm 0.1 \mu \mathrm{~m}$ - Wide range accuracy: $0 \sim 400 \mu \mathrm{~m} \pm 0.1 \mu \mathrm{~m}$	For magnification calibration

C1700DX/SD, C2700DX/SD Contour Stylus

C1700DX/SD, C2700DX/SD Arms for Contour

Measuring Application	Model	Outer Appearance	Application Stylus			Remarks	
General purpose	0102800 (1)		DM45502 DM45523	DM45505 DM45526	DM45508	C1700/S1900	- Standard configuration - Deflection: Approx. $1.2 \mu \mathrm{~m}$ for 10 mN Approx. $3.7 \mu \mathrm{~m}$ for 30 mN
	DM45528					C2700/S2900	
Inner surface	0102801 (1)		DM4550 DM4552	$\begin{aligned} & \text { DM45506 } \\ & \text { DM45527 } \end{aligned}$	DM45509	C1700/S1900	- Deflection: Approx. 1.2 m for 10 mN Approx. $3.7 \mu \mathrm{~m}$ for 30 mN
	DM45529 미					C2700/S2900	
Small holes	0102802 다		DM45081~DM45092			C1700/S1900	Stylus combination arm for measuring small holes (Provided with auxiliary weight)
	DM45530		DM45510~DM45521			C2700/S2900	
Deep grooves	0102804		DM4550 DM4552	DM45504 DM45525	DM45507	C1700/S1900	- Measuring Range : $\pm 10 \mathrm{~mm}$ 0102744 pickup holder coupling required. Measuring force: 10 mN or less (Provided with auxiliary weight) Deflection: Approx. $1.2 \mu \mathrm{~m}$ for 10 mN Approx. $3.7 \mu \mathrm{~m}$ for 30 mN
	DM45531					C2700/S2900	
Offset measurement	0102805 (1)		DM4550 DM4552	DM45505 DM45526	DM45508	C1700/S1900	- Measuring Range : $\pm 2.5 \mathrm{~mm}$ - Offset : 50 mm - Measuring force: 10 mN or less (Provided with auxiliary weight) - Deflection: Approx. 2.6 $\mu \mathrm{m}$ for 10 mN Approx. $7.8 \mu \mathrm{~m}$ for 30 mN
	DM45532 (1)					C2700/S2900	
	0102807 (1)		DM4550 DM4552	$\begin{aligned} & \text { DM45506 } \\ & \text { DM45527 } \end{aligned}$	DM45509	C1700/S1900	
	DM45533					C2700/S2900	

Option

■ Adjustment Devices

Name	Model	Outer Appearance	Orthogonal Axis Adjustment (mm)			Swivel Adjustment		Tilt Adjustment		$\begin{gathered} \text { Table Size } \\ (\mathrm{mm}) \end{gathered}$	Allowable Load (kg) (net wt.)	Remarks
			X	Y	Z							
Adjustment stand				50		8°	360°			¢150	$\begin{aligned} & 20 \\ & (7) \end{aligned}$	Min. reading increment: $10 \mu \mathrm{~m}$
Leveling adjustment stand	E-AT-SO2A							$\pm 1.5^{\circ}$		80×110	$\begin{aligned} & 15 \\ & \text { (3) } \end{aligned}$	
Adjustment stand	E-AT-SO3A			± 2.5		$\pm 2^{\circ}$				80×58	$\begin{aligned} & 3 \\ & (0.9) \end{aligned}$	For E-RM-S75A
Adjustment stand	E-AT-S04A			± 8		$\pm 3^{\circ}$				80×125	$\begin{aligned} & 15 \\ & (8) \end{aligned}$	
Adjustment stand	E-AT-S05A			± 3		$\pm 1^{\circ}$				120×58	$\begin{aligned} & 3 \\ & (1.4) \end{aligned}$	For E-RM-S76A
Adjustment stand	E-AT-S36A			± 3		$\pm 1^{\circ}$				200×120	$\begin{aligned} & 5 \\ & (4.5) \end{aligned}$	For E-RM-S77A
X-direction movement adjustment stand	E-AT-S08A		400							150×150	$\begin{aligned} & 20 \\ & (25) \end{aligned}$	
Tilting stand	E-AT-S64B							$\pm 20^{\circ}$		60×120	$\begin{aligned} & 10 \\ & (1) \end{aligned}$	Min. reading value: 5'
Universal stand	E-WJ-SO3A						360 ${ }^{\circ}$		$\pm 90^{\circ}$	\$110	$\begin{aligned} & 3 \\ & (2.5) \end{aligned}$	X / Y-direction adjustment

Holders

Name	Model	Outer Appearance	Holder (mm)	Chucking (mm)	Vice (mm)	Clamp (mm)	Flat Surface (mm)	Allowable (nod (kg) (net.)	Remarks
Double-side open vice	E-WJ-SO1B								

Peripherals

Ordinary stand for desktop anti-vibration table	E-VS-S13A (1)			Dimensions: $510^{W} \times 430^{\circ} \times 643^{H} \mathrm{~mm}$ - Weight: 22kg E-VS-S57A/B, E-VS-S58A
Desktop anti-vibration table	E-VS-S57B (ㄷ)		Anti-vibration: Pneumatic diaphragm spring Natural frequency: 2.5 to 3.5 Hz Load weight:130kg	- Dimensions: $600^{W} \times 530^{\mathrm{D}} \times 60^{\mathrm{H}} \mathrm{mm}$ - Air source: 350 to 700 kPa - Weight: 25kg Requires nylon tube with $\varnothing 6 \mathrm{~mm}$ outer and Cumm inner diameter for quick joint connecting aperture.
	E-VS-S58A		Anti-vibration: Pneumatic diaphragm spring Natural frequency: 2.5 to 3.5 Hz Load weight:130kg	Dimensions: $600^{W} \times 530^{\text {D }} \times 60^{H} \mathrm{~mm}$ - Air source: Pump - Weight: 25kg
Anti-vibration table	E-VS-R16B (ㄷ)	Dimensions in (parentheses) are for the E-VS-S21A	Anti-vibration: Pneumatic diaphragm spring Natural frequency: V: 2 Hz ; $\mathrm{H}: 2.2 \mathrm{~Hz}$ Load weight:250kg	- Dimensions: $980^{W} \times 780^{\circ} \times 700^{H} \mathrm{~mm}$ - Air source: 350 to 700 kPa - Weight: 170kg
	E-VS-S21A		Anti-vibration: Pneumatic diaphragm spring Natural frequency: $\mathrm{V}: 1.6 \mathrm{~Hz} ; \mathrm{H}: 2 \mathrm{~Hz}$ Load weight:550kg	Dimensions: $1100^{\mathrm{W}} \times 850^{\circ} \times 700^{\mathrm{H}} \mathrm{mm}$ - Air source: 350 to 700 kPa - Weight: 340 kg

Sample Adjustment Stand／Holder Configurations

\square Expended System by adding CNC table unit

Example of axis CNC table（ 100 mm ） and θ－axis CNC table（horizontal）combination

Y－axis CNC table（100mm）

CNC Table

1．The standard measuring system can be automated by adding a CNC table unit． 2．CNC table control，and simplified teaching and playback can be performed from the『ACCTee』integrated measuring software．
3．The Y －axis table and rotary table can be rearranged as needed in order to configure the system to suit the workpiece．

〈Y－axis CNC table（200mm）〉	
E－AT－S106A	
Travel	200 mm
travel speed	$50 \mathrm{~mm} / \mathrm{s}$
Positioning precision	20 mm
Max．load	30 kg
Weight	Approx．19kg

〈 θ－axis CNC table（horizontal）${ }^{\text {a }}$	
E－AT－S107A	
Travel	360°
travel speed	$20^{\circ} / \mathrm{sec}$
Positioning precision	0.03°
Max．load	15 Kg
Weight	Approx． 2.5 kg
〈 $\boldsymbol{\theta}$－axis CNC table（vertical）${ }^{\text {d }}$	
E－AT－S108A	
Travel	360°
travel speed	20\％／sec
Positioning precision	0.03°
Max．load	5 kg
Weight	Approx．3．2kg

Y－axis CNC table（200mm）

θ－axis CNC table（vertical）

Roughness

ACCTee roughness measurement analysis system

ACCTee has changed the roughness measurement style with its new concept the measurement can be executed on a document basis, providing preeminent workability and comfortable work environment. As the setting can be proceeded under the guidance of various setting wizards, anyone can perform the measurement tasks easily and efficiently.

Various setting wizards

- Measurement AI

The parameters and analysis condition appropriate for the roughness standard and evaluation purpose can be specified.

- Detector Calibration

The sensitivity calibration is executed by selecting any of the following three options: depth specimen; magnification calibration unit; and reference specimen. The time for calibration can be notified in a message according to the time for replacing the probe, measurement frequencies, and lapsed days.

- Checking tip of stylus

The tip of the stylus gets wears and chips more and more as it is used for measurement continuously. A regular check is necessary to maintain accurate measurement.

Automatic judgment under 16\% rule (JIS2001 standard)

The 16% rule and the max rule are standardized for the tolerance criteria of the roughness evaluation parameters. The criteria for the 16% rule and the max rule are as follows: 16% rule - if the number of sections that exceed the tolerance is below 16% of the measurement values of multiple standard length (sections), it is assumed to meet the criteria; max rule - if all the measurement values of multiple standard length (all sections) do not exceed the tolerance, it is assumed to meet the criteria.

ACCTee

All in the Document!

Distinguished operation by

 document screenACC Tee is equipped with a Windows style user interface to which anyone can access easily. High operability is achieved with the friendly and intuitive icons that assist

a series operation from the
measurement to the printing of analysis result.

Document basis data batch processing

As an integrated measurement system, ACCTee can comprehensively manage the roughness and contour data in inspection result sheet or file.

International Support

ACCTee can be used overseas and supports several languages including Japanese, English, German, French, Italian, Spanish, Chinese, and Korean. (consult us before taking out to overseas countries)

Support multiple languages

Specification	ACCTee roughness measurement and analysis program
Support roughness standard	Conforming to JIS2001, and JIS1994, JIS1982, ISO1997, ISO1984, DIN1990, ASME2002/1995 - CNOMO
Parameter	Ra, Rq, Ry, Rp, Rv, Rc, Rz, Rmax, Rt, Rz.J, R3z, Sm, S, R $\Delta a, R \Delta q$, R $\lambda a, ~ R \lambda q$ TILT A, Ir, Pc, Rsk, Rku, Rk, Rpk, Rvk, Mr1, Mr2, A1, A2, Vo, K, tp, Rmr, Rmr2, R σ c, AVH, Hmax, Hmin, AREA, NCRX, R, Rx, AR, NR, CPM, SR, SAR, etc
Parameter judgment	The judgment result can be displayed by standard, average value, the maximum value, minimum value, and 16% rule
Evaluation curve	Profile Curve, Roughness Curve, Filtered Waiveness Curve, Roll. Circ. Waiveness, Rolling Circle Waiveness Curve ISO13565-1(DIN4776) Roughness Curve, Roughness Motif Curve, Waiveness Motif Curve, and Upper Envelope Curve
Surface characteristic display	Bearing area curve, power graph, ADC graph, ISO13565-2 Bearing area curve, peak height distribution graph/list, auto correlation graph wear-out amount analysis (two arbitrary curves), and overlapping analyses (ten curves or less)
Form remove (tilt correction)	Least square straight line correction, n-dimension polynomial ($n=2-9$) correction, both ends correction, least square circle correction, least square oval correction, spline correction, robust (spline) correction (arbitrary or beginning or latter half of the setting range can be specified for all the options)
Filter type	Gaushian phase compensating filter, phase uncompensation type 2RC filters, phase compensation type 2RC filters, spline filter, and robustness (spline)
Filter	Cut-off wavelength $(\lambda \mathrm{c}): 0.008, ~ 0.025, ~ 0.08, ~ 0.25, ~ 0.8, ~ 2.5, ~ 8, ~ 25, ~ 50 \mathrm{~mm}$ (9 levels), arbitrary (from 0.001 mm) Cutoff ratio $(\lambda s): 1 / 30, ~ 1 / 100, ~ 1 / 300, ~ 1 / 1000$, arbitrary (from $1 / 10$) Cut-off wavelength $(\lambda \mathrm{s}): 0.08, ~ 0.25, ~ 0.8,2.5, ~ 8, ~ 25, ~ 80 \mu \mathrm{~m}$ (7 levels), arbitrary (from 0.05)
Stylus calibration	Can be selected from depth specimen (JIS standard), magnification calibration unit, and reference specimen. Maximum 20 units of stylus calibration information can be registered (dead line for the calibration time can be specified)
Number of data points	Maximum 300,000 points
Magnification display: Lengthwise	Arbitrary value (unit:0.01), automatic and $50-10,000 \mathrm{k}$ times
Magnitication display: Sidewise	Arbitrary value (unit:0.01), automatic and 1-1,000k times

Establish new measurment style by new concept

All meaurement

 and analysis can be done on the document
Self diagnostic susyem

In preparation for emergency, the self-diagnosis function is always working. As the support function for handling errors, the message indicating the troubled locations such as failures and errors of the measurement machine is displayed, so that the operator smoothly can take appropriate actions in order to settle down the problem as soon as

The troubled location is indicated by a picture

International Support

ACCTee always can call up the Help whenever the ACCTee is on. ACCTee introduces online manual system so that an appropriate help message can be displayed by clicking the soft key of the help. The help message also can be retrieved by the index or by keywords.

Help display

ACCTee contour profile measurement analysis system

ACCTee has changed the contour profile measurement style with its new concept - the measurement can be executed on a document basis, providing preeminent workability and comfortable work environment. As the setting of each function from measurement to analysis can be proceeded with the operability easy for operators, anyone can perform the measurement tasks easily and efficiently.

Batch stylus calibration wizard

The calibration for the R tip correction (acquiring radius values of each 10 degrees) and the circular arc error correction (misalignment of X value) can be executed automatically at a time by the masterball measurement and the step height measurement of the masterball calibration unit. The procedure of the calibration is proceeded under the guidance of the wizard. *Patent

Calibration wizard

Al function (automatic element judgment)
The points, straight lines, and circles of the basic elements are automatically distinguished just by selecting the specified area of the measurement data.

Calculation result preview function (patent pending)

When the area for the calculation is entered, the preview of the calculation result and the dimension lines are displayed immediately which can be used for the confirmation before finalizing the result.

Tip R correction

Circle Correction Calculation

Calculation result preview state

Specification	ACCTee contour profile measurement machine and analysis program
AI function	Automatic distinction of elements including points, straight lines, and circles Automatically distinguish the combination executable of calculation between two elements (point - point, point - straight line, point - circle, point - oval, straight line - straight line, circle - straight line, circle - circle, straight line - oval, circle - oval, oval - oval)
	Point (cross point, mid-point, contact point, peak, valley), Line (perpendicular, median, contact line, parallel line, bisector, virtual line), Circle (partial circle, oval, contact circle, virtual circle), Pitch (pitch between line cross, pitch between circle centers), Distance, Curve length, Angle, Inter angle(cmplm. angle, suppl. angle), Coord. Diff (X coord. difference, Z coord. difference, dliff. angle, radius difference), Polar coord difference, Step difference (average step, max. step, min. step), Area calculation (addition, subtraction, multiplication, division, power operation, surplus, absolute value, square root), Statistics (average, max., min., std. dev., total sum), Over-pin calculation, Dimension line display function, Calculation result design value collation, mirror inverse, smoothing, form combining (whole composition, partial composition), Calculation point repeat function, Work trace function, Peak/valley function, CNC function, Nominal collation, Best fit (parallel move, rotary move), Nominal value preparation function
Data file I/O	Input of point sequence, text, CSV, IGES, DXF data and ASCII data of Calypso Curve
Coordinate control	Origin, setting each axis, parallel move, and rotary move
Calculation support function	Infinite cursor, cursor form vertical/horizontal switch, one point micro motion, setting or error band
Stylus calibration	Batch automatic calibration and manual calibration by the masterball calibration unit Maximum 20 units of stylus calibration information can be registered (the deadline of the calibration time can be specified)
Measure pitch	$0.01 \sim 1000 \mu \mathrm{~m}$
Number of data points	Maximum 300,000 points
Magnification display: Lengthwise	Arbitrary value (unit:0.01), automatic and 0.01-10,000,000 times
Magnification display: Sidewise	Arbitrary value (unit:0.01), automatic and 0.01-10,000,000 times

Description of data analysis/parameter standard

Definition of Surface texture and Stylus instrument

Profile by Stylus and phase correct filter
 ISO4287: '97 and ISO3274: '96

Acceptance decision rule		Sampling length setting procedure
ISO4288: '96	JIS B0633 : '01	JIS B0633 : '01/ ISO 4288 : '96
Upper limit - the 16% rule (shown with U, Default) in EU Measure the most critical surface. The surface is acceptable if not more than 16% of all values averaged through evaluation length are exceed the limit	Upper limit - the 16% rule (shown with U, Default) in JISB0633 Measure the most critical surface. If not more than 16% of all values based on sampling length are exceed the limit, surface is acceptable	1. View the surface and decide whether profile is periodic or non-periodic. 2. Estimate roughness and measure it in corresponding condition in the table. 3. Change condition according with above
Lower limit - the 16% rule (shown with L) in EU Measure the surface that can be expected the lowest roughness. The surface is acceptable if not more than 16% of all values averaged through evaluation length are less than the limit.	Lower limit - the 16% rule (shown with L) in JISB0633 Measure the surface that can be expected the lowest roughness. The surface is acceptable if not more than 16% of all sampling lengths are less than the limit	result and measure it again. 4. Repeat " 3 ." if the result does not reached the condition. 5. When the result reaches the condition, it will be the final value. Check it in shorter sampling length at non periodic and change it if it meets.
Max value - the max rule (shown with "max" suffix) in EU The surface is acceptable when none of values averaged through evaluation length in entire surface are over the limit.	Max value - the max rule (shown with "max" suffix) in JISB0633 The surface is acceptable when none of values based on each sampling length in entire surface are over the limit.	6. Judge if the value clear the tolerance by the rule shown at the left column.

Sampling length and Evaluation length

ISO4287: '97

Indication of surface texture

Note.:
Default item (red) is not indicated
Additional item (blue) is indicated if necessary.

Measuring condition: R-parameter

Non-periodic profile				Periodic profile or RSm		Measuring Condition	
Ra,Rq,Rsk,Rku or $R \Delta q$		$\begin{aligned} & R z, R v, R p, R c, \\ & \text { or } R t \end{aligned}$				Sampling length: l $r=$ CutOff $\lambda c(\mathrm{~mm})$	$\begin{aligned} & \text { Evaluation } \\ & \text { length } \\ & \ell n(m m)= \\ & 5 \times \ell r \end{aligned}$
$R a(\mu \mathrm{~m})$		$R z(\mu \mathrm{~m})$		$R S m$ (mm)			
Over>	Less \leq	Over>	Less \leq	Over>	Less \leq		
0.006	0.02	0.025	0.1	0.013	0.04	0.08	0.4
0.02	0.1	0.1	0.5	0.04	0.13	0.25	1.25
0.1	2	0.5	10	0.13	0.4	0.8	4
2	10	10	50	0.4	1.3	2.5	12.5
10	80	50	200	1.3	4	8	40

Measuring condition : P-parameter

JIS B0633 : '01/ ISO4288 : '96

Stylus radius	$\lambda \mathrm{s}$	λc	No. of $\ell p=n$	S. length ℓp	E. length ℓn
$2 \mu \mathrm{~m}$	$2.5 \mu \mathrm{~m}$			Length of feature (Plane, Line)	Length of feature
$5 \mu \mathrm{~m}$	$8 \mu \mathrm{~m}$	-	1		
$10 \mu \mathrm{~m}$	$25 \mu \mathrm{~m}$				

Measuring condition: W-parameter

ISO1302: '02

λc	λf	No. of $\ell w=m$	S. length ℓw	E. length ℓn
λc (for roughness)	$n \lambda c$ $(n: s p e c i f i e d)$	$m:$ specified	λf	$m \lambda f$

Description of data analysis/parameter standard

Basic surface texture parameters and curves

$\left.\begin{array}{l}\boldsymbol{R} \boldsymbol{v} \\ \boldsymbol{P} \boldsymbol{v} \\ W_{v}\end{array}\right]$ Maximum profile valley depth
 $W v 」$

The largest profile valley depth Zp within a sampling length.

$$
R v, P v, W v=\min (Z(\mathrm{x}))
$$

Rz
 Pz $W z$
 Maximum height of profile
 (Rz = Ry at ISO4287 '84)

Sum of height of the largest profile peak height $R p$ and the largest profile valley $R v$ within a sampling length.

$$
R z=R p+R v
$$

[^1]

Profile element:
Profile peak \& the adjacent valley
$\left.\begin{array}{l}\boldsymbol{R t} \\ \boldsymbol{P t} \\ \boldsymbol{W} \boldsymbol{t}\end{array}\right] \begin{aligned} & \text { Total height of profile } \\ & \text { (Pt = Rmax at JIS'82) }\end{aligned}$
Sum of height of the largest profile peak height $R p$ and the largest profile valley $R v$ within an evaluation length.
$R t, P t, W t=\max (R p \mathrm{i})+\max (R v \mathrm{i})$

$\left.\begin{array}{l}R \boldsymbol{c} \\ P \boldsymbol{c} \\ W \boldsymbol{c}\end{array}\right]$ Mean height of profile elements

Mean value of the profile element heights $Z t$ within a sampling length.

$$
R c, P c, W c=\frac{1}{\mathrm{~m}} \sum_{\mathrm{l}=1}^{\mathrm{m}} Z \mathrm{ti}
$$

Rzjis Ten point height of roughness profile (Rz at JIS'94)
Sum of mean value of largest peak to the fifth largest peak and mean value of largest valley to the fifth largest valley within a sampling length.

$$
R z_{j i s}=\frac{1}{5} \sum_{\mathrm{j}=1}^{5}\left(Z_{p \mathrm{j}}+Z v \mathrm{j}\right)
$$

Annex of JIS only and confirm to JIS'94
Different from Rz at JIS'82

Amplitude average parameters
$\left.\begin{array}{l}R a \\ P a \\ W a\end{array}\right]$ Arithmetical mean deviation

Arithmetic mean of the absolute ordinate values $Z(x)$ within a sampling length.

$$
R a, P a, W a=\frac{1}{L} \int_{0}^{L}|Z(\mathrm{x})| \mathrm{dx}
$$

$\left.\begin{array}{l}\boldsymbol{R q} \\ \boldsymbol{P q} \\ \mathbf{W q}\end{array}\right]$ Root mean square deviation

Root mean square value of the ordinate values $Z(x)$ within a sampling length.
$R q, P q, W q=\sqrt{\frac{1}{L} \int_{0}^{L} Z^{2}(\mathrm{x}) \mathrm{dx}}$

Ra75 Center line average
(Old Ra, AA, CLA)
Arithmetic mean of the absolute ordinate value $Z(x)$ in a sampling length of roughness profile with 2RC filter of 75% transmission.

$$
R a_{75}=\frac{1}{L} \int_{0}^{\ell_{\mathrm{n}}}|Z(\mathrm{x})| \mathrm{dx}
$$

[^2]

Parameter from bearing ratio curve and profile height amplitude curve

Material ratio curve of the profile
(Abbott Firestone curve)
Curve representing the material ratio of the profile as a functional of level c.

Profile height amplitude curve

Sample probability density function of ordinate $Z(x)$ within an evaluation length.

Rmr(c)

Ratio of the material length of the profile elements $M I(\mathrm{c})$ at a given level c to the evaluation length.

$$
\operatorname{Rmr}(\mathrm{c})=\frac{100}{\ell n} \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{M} \ell(\mathrm{c})_{\mathrm{i}}(\%)
$$

$R \bar{c}$
 $\boldsymbol{P} \boldsymbol{\delta} \boldsymbol{c} \quad$ Profile section height difference
 $W \delta c$

Vertical distance between two section levels of given material ratio.
$R \delta c=\mathrm{c}(R m r 1)-\mathrm{c}(R m r 2): R m r 1<R m r 2$

Height characteristic average parameters
Rsk
Psk Skewness
Wsk
Quotient of mean cube value of the ordinate values $Z(x)$ and cube Pq, Rq, Wq respectively, within a sampling length.

$$
R s k=\frac{1}{R q^{3}}\left(\frac{1}{\ell \mathrm{r}} \int_{0}^{\ell \mathrm{r}} Z^{3}(\mathrm{x}) \mathrm{dx}\right)
$$

$\left.\begin{array}{l}\boldsymbol{R} \boldsymbol{k} \boldsymbol{u} \\ \boldsymbol{P k u} \\ \boldsymbol{W} \boldsymbol{k} \boldsymbol{u}\end{array}\right]$ Kurtosis of profile

Quotient of mean quartic of the ordinate values $Z(x)$ and 4th power of $P q, R q, W q$ respectively, within a sampling length.

$$
R k u=\frac{1}{R q^{4}}\left(\frac{1}{\ell r} \int_{0}^{\ell \mathrm{r}} Z^{4}(\mathrm{x}) \mathrm{dx}\right)
$$

Rmr
 Pmr Relative material ratio Wmr 」

Material ratio determined at a profile section level $R \delta c$, related to a reference $c o$.

$$
\begin{aligned}
& R m r=R m r\left(\mathrm{c}_{1}\right) \\
& \mathrm{C}_{1}=\mathrm{C}_{0}-R \delta c, \mathrm{C}_{0}=\mathrm{C}(R m r 0)
\end{aligned}
$$

Description of data analysis/parameter standard

Expanded surface texture parameters and curves

Traditional local parameters

RmaxDIN Maximum peak to valley height RzDIN Average peak to valley height

Zi is the maximum Peak to valley height of a sampling length ℓr.
RmaxDIN is the maximum Zi of 5 adjoining sampling length ℓr in an evaluation length ℓn. RzDIN is arithmetic mean of 5 Zi .

$$
R z D I N=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Zi}
$$

R3z Base roughness depth

$3 Z i$ is the height of the 3rd height peak from the 3 rd depth valley in a sampling length ℓr.
$R 3 z$ is arithmetic mean of $3 Z$ i's of 5 sampling lengths in an evaluation length ℓn.

$$
R 3 z=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} 3 \mathrm{zi}
$$

German old standard DIN4768/1: '90

PC Peak density /cm: ASME B46.1: '95
PPI Peaks per inch: SAEJ911
HSC High spot count
$P c$ is the number of peaks counted when a profile intersects a lower boundary line -H and an upper line +H per unit length 1 cm . $P P I$ shows $P c$ in 1 inch (25.4 mm) unit length. HSC shows the number of peaks when the lower boundary level is equal to zero.

Confirm to ISO4287: '96, ISO12085: '96 \& ISO13565-1: '96 / -2: '96 /-3: '98
Parameters of surfaces having stratified functional properties ISO13565's

Filtering process of ISO13565-1:'96
Calculate mean line 1 from a primary profile with phase correct filter.

Calculate profile 2 with cutting valley lower than mean line 1

Calculate mean line 3 from profile 2 with phase correct filter.

Calculate roughness profile 4 by taking mean line 3 off from a primary profile.

Measuring conditions of ISO13565-1

Cutoff value λc	Evaluation length ℓn
0.8 mm	4 mm
2.5 mm	12.5 mm

40% length secant of smallest gradient separate the material ratio curve into core area \& projected areas.
Calculate Rpk \& Rvk with equivalent triangles of projected areas.

Height characterization using the linear material ratio curve ISO13565-2:'96
Rk core roughness depth : Depth of the roughness core profile
Rpk reduced peak height : Average height of protruding peaks above roughness core profile.
Rvk reduced valley depths: Average depth of valleys projecting through roughness core profile.
Mr1 material portion 1 : Level in \%, determined for the intersection line which separates the protruding peaks from the roughness core profile.
Mr2 material portion 2 : Level in \%, determined for the intersection line which separates the deep valleys from the roughness core profile.

Rolling circle waviness parameter JIS B0610 : '01

Measuring condition

Radius of rolling circle $r_{\text {tip }}: 0.08,0.25,0.8,2.5,8,25 \mathrm{~mm}$
\& w Sampling length : $0.25,0.8,2.5,8,25,80 \mathrm{~mm}$

Tilt correction ζ
Rolling circle waviness total profile

Delete longer component than waviness by $\lambda \mathrm{f}$ filter
λf cutoff value : $0.8,2.5,8,25 \mathrm{~mm}$ Default value : 8 mm
$Z(x)$ Filtered rolling circle waviness profile
WEM WEM Maximum height of rolling circle waviness protile
Defined only JIS standard
Vertical spacing between 2 line parallel to mean line within sampling length ℓw of Filtered rolling circle waviness profile.

WEA Arithmetical mean deviation of filtered rolling circle waviness profile.
Defined only JIS standard
Arithmetical mean of absolute ordinate value $Z(X)$ within evaluation length ℓn of Filtered rolling circle waviness profile.

$$
W E A=\frac{1}{\ell n} \int_{0}^{\ell n}|Z(\mathrm{x})| \mathrm{dx}
$$

Comparison of national standards of surface texture measurement

		JIS B0601-'82 JIS B0031-'82 former Japan	ANSI B46.1-'85 former U.S.A.	NF E05-015('84) NF E05-016('78) NF E05-017('72) former France	ISO468-'82 ISO4287/1-'84 ISO4288-'85 ISO1302-'78 former ISO
Primary profile P	Profile format	Analog signal without filtering	Analog signal with low pass filtering	Analog signal without filtering	Analog signal without filtering
	Evaluation length	$\begin{gathered} \text { 1 sampling length } \\ 0.25,0.8,2.5,8, \& 25 \end{gathered}$	- -	not defined	-
P profile parameter	Maximum height	Rmax (\mathbf{S} indication)	-	Pt	-
	Ten point height	Rz (Z indication)	\square	-	-
	Other P parameters	-	-	Pp, Pa, (Tp)c,	-
	Motif parameters	-	-	R, AR, Kr, W, W'max, W't, AW, Kw	-
	Indication of maximum height $<1.5 \mu \mathrm{~m}$	$\sqrt{R \max =1.6} \begin{aligned} & R \max =0.8 \end{aligned}$	-	$\text { Pt } 0.8-0.6$	-
Roughness profile R	Unit of height	$\mu \mathrm{m}$	$\mu \mathrm{m}$ or $\mu \mathrm{in}$.	$\mu \mathrm{m}$	$\mu \mathrm{m}$
	Unit of length	mm	mm or in.	mm	mm
	Filter	2RC	2RC	2RC	2RC
	Long cutoff	λc	$\lambda \mathrm{B}$	λc	λc
	Short cutoff	-	cutoff value $2.5 \mu \mathrm{~m}$	\square	-
	Sampling length	$\mathrm{L}=3 \times \lambda \mathrm{c}$ or over	L:1.3-5mm@ $\lambda \mathrm{B} 0.25$ L:2.4-8mm@ λ B 0.8 L:5-15mm @ λ B 2.5	ℓ	ℓ
	Evaluation length	TL=L=3 $\times \lambda \mathrm{c}$ or over		$\mathrm{L}=\mathrm{n} \times \ell$	$\ell n=\mathrm{n} \times \ell$
R profile Height parameter	Maximum height	-	$\begin{aligned} & \text { Peak-to-Valley } \\ & \text { Height (Rmax, Ry) } \end{aligned}$	Ry	Ry
	Maximum peak to valley height	-	-	Rmax	Rymax
	Ten point height	-	(Rz)	Rz	$R z$
	Average peak to valley height	-	-	-	Ry5
	Other peak height parameters	-	(Rp)	Rp	Rp, Rpmax, Rp5, $R m, R c$
ℓr \& λc for peak height parameter	0.25 mm	$\mathrm{Rmax}_{\text {ma }} \mathrm{Rz} \leq 0.8 \mu \mathrm{~m}$	-	not defined	$0,1<R z, R y \leq 0,5 \mu \mathrm{~m}$
	0.8 mm	$0.8<R_{\text {max }}, \mathrm{Rz} \leq 6.3 \mu \mathrm{~m}$	-	not defined	$0,5<R z, R y \leq 10 \mu \mathrm{~m}$
	2.5 mm	$6.3<\mathrm{R}_{\max }, \mathrm{Rz} \leq 25 \mu \mathrm{~m}$	-	not defined	$10<R z, R y \leq 50 \mu \mathrm{~m}$
Indication of Maximum height in case of $R z<1.5 \mu \mathrm{~m}$			-	Rmac 1.6	$\sqrt{R y=1.6}$
R profile averaging parameter	Arithmetic average	Ra (a indication)	$R a$	Ra	Ra
	root mean square	-	(Rq)	Rq	$R q$
	Skewness, kurtosis	-	(Skewness, Kurtosis)	Sk, Ek	Sk
$\ell r \& \lambda c$ for Ra on non-periodic profile	0.25 mm	optional	$0.0063<S m \leq 0.05 \mu \mathrm{~m}$	not defined	$0,02<R a \leq 0,1 \mu \mathrm{~m}$
	0.8 mm	$\mathrm{Ra} \leq 12.5 \mu \mathrm{~m}$	$0.02<S m \leq 0.16 \mu \mathrm{~m}$	not defined	$0,1<R a \leq 2 \mu \mathrm{~m}$
	2.5 mm	$12.5<\mathrm{Ra} \leq 100 \mu \mathrm{~m}$	$0.063<S m \leq 0.5 \mu \mathrm{~m}$	not defined	$2<R a \leq 10 \mu \mathrm{~m}$
Indication of Ra in case of $1.5<R a<3.1 \mu \mathrm{~m}$		$\begin{aligned} & 3.2 \\ & 1.6 \end{aligned}$	$\begin{gathered} 125 \\ 63 \end{gathered}$	Ra 1.6-3.2	$\nabla^{3.2} 1.6 / \begin{aligned} & \mathrm{N} 8 \\ & \mathrm{~N} 7 \end{aligned} /$
R profile other parameter	Mean spacing	-	Roughness spacing	Sm	Sm
	RMS slope	-	-	Δq	Δq
	material ratio	-	(tp)	-	tp
	Other parameters	-	(Peak count PC)	S, $\Delta \mathrm{a}, \lambda \mathrm{a}, \lambda \mathrm{q}$	$\underset{L o, D}{S, \Delta a, \lambda a, \lambda q,}$
Comparison rule of measured value with tolerance limits	Average	average value of all sampling lengths	average value of all sampling lengths	not defined	-
	16\% rule	-	-	not defined	16\% rule default
	Maximum rule	-	-	not defined	Max rule for parameter with suffix "max"

TOKYO SEIMITSU CO., LTD.

[^0]: S2000DX/SD series represent S2000DX/DX2/DX3 and S2000SD/SD2/SD3 model.

[^1]: Different from Rz at old ISO, ANSI \& JIS

[^2]: Annex of JIS only
 Same as Ra at old ISO, ANSI \& DIN

